Step of Proof: assert_of_eq_int
9,38
postcript
pdf
Inference at
*
1
1
2
1
I
of proof for Lemma
assert
of
eq
int
:
1.
x
:
2.
y
:
3.
ff
4.
(
x
=
y
)
x
=
y
latex
by ((((Unfold `assert` 3)
CollapseTHEN (RW ifthenelse_evalC 3))
)
CollapseTHEN (
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 4:n)) (first_tok :t) inil_term)))
latex
C
.
Definitions
False
,
if
b
then
t
else
f
fi
,
ff
,
b
origin